html{overflow-x:hidden;max-width:100vw} .{{async}}:not([data-{{type}}="outgoing"]) + .{{async}}:not([data-{{type}}="outgoing"]){display:none} [data-{{status}}]{background-color:transparent;transition:background-color .2s ease} [data-{{status}}]{position:relative;overflow:hidden;border-radius:3px;z-index:0} .{{cross}}{transition:box-shadow .2s ease;position:absolute;top:-0px;right:0;width:34px;height:34px;background:#000000;display:block;cursor:pointer;z-index:99;border:none;padding:0;min-width:0;min-height:0} .{{cross}}:hover{box-shadow:0 0 0 50px rgba(0,0,0,.2) inset} .{{cross}}:after, .{{cross}}:before{transition:transform .3s ease;content:'';display:block;position:absolute;top:0;left:0;right:0;bottom:0;width:calc(34px / 2);height:3px;background:#ffffff;transform-origin:center;transform:rotate(45deg);margin:auto} .{{cross}}:before{transform:rotate(-45deg)} .{{cross}}:hover:after{transform:rotate(225deg)} .{{cross}}:hover:before{transform:rotate(135deg)} .{{timer}}{position:absolute;top:-0px;right:0;padding:0 15px;color:#ffffff;background:#000000;line-height:34px;height:34px;text-align:center;font-size:14px;z-index:99} [data-{{type}}="outgoing"].center .{{timer}},[data-{{type}}="outgoing"].center .{{cross}}{top:0!important} .{{timer}} span{font-size:16px;font-weight:600} [data-{{type}}="outgoing"]{transition:transform 300ms ease,opacity 300ms ease,min-width 0s;transition-delay:0s,0s,.3s;position:fixed;min-width:250px!important;z-index:9999;opacity:0;background:#ffffff;pointer-events:none;will-change:transform;overflow:visible;max-width:100vw} [data-{{type}}="outgoing"] *{max-width:none} [data-{{type}}="outgoing"].left-top [id*="yandex_rtb_"], [data-{{type}}="outgoing"].right-top [id*="yandex_rtb_"], [data-{{type}}="outgoing"].left-center [id*="yandex_rtb_"], [data-{{type}}="outgoing"].right-center [id*="yandex_rtb_"], [data-{{type}}="outgoing"].left-bottom [id*="yandex_rtb_"], [data-{{type}}="outgoing"].right-bottom [id*="yandex_rtb_"]{max-width:336px;min-width:160px} [data-{{type}}="outgoing"]:after,[data-{{type}}="outgoing"]:before{display:none} [data-{{type}}="outgoing"].{{show}}{opacity:1;pointer-events:all;min-width:0!important} [data-{{type}}="outgoing"].center{position:fixed;top:50%;left:50%;height:auto;z-index:2000;opacity:0;transform:translateX(-50%) translateY(-50%) scale(.6)} [data-{{type}}="outgoing"].center.{{show}}{transform:translateX(-50%) translateY(-50%) scale(1);opacity:1} [data-{{type}}="outgoing"].left-top{top:0;left:0;transform:translateX(-100%)} [data-{{type}}="outgoing"].top-center{top:0;left:50%;transform:translateX(-50%) translateY(-100%)} [data-{{type}}="outgoing"].right-top{top:0;right:0;transform:translateX(100%)} [data-{{type}}="outgoing"].left-center{top:50%;left:0;transform:translateX(-100%) translateY(-50%)} [data-{{type}}="outgoing"].right-center{top:50%;right:0;transform:translateX(100%) translateY(-50%)} [data-{{type}}="outgoing"].left-bottom{bottom:0;left:0;transform:translateX(-100%)} [data-{{type}}="outgoing"].bottom-center{bottom:0;left:50%;transform:translateX(-50%) translateY(100%)} [data-{{type}}="outgoing"].right-bottom{bottom:0;right:0;transform:translateX(100%)} [data-{{type}}="outgoing"].{{show}}.left-center, [data-{{type}}="outgoing"].{{show}}.right-center{transform:translateX(0) translateY(-50%)} [data-{{type}}="outgoing"].{{show}}.top-center, [data-{{type}}="outgoing"].{{show}}.bottom-center{transform:translateX(-50%) translateY(0)} [data-{{type}}="outgoing"].{{show}}.left-top, [data-{{type}}="outgoing"].{{show}}.right-top, [data-{{type}}="outgoing"].{{show}}.left-bottom, [data-{{type}}="outgoing"].{{show}}.right-bottom{transform:translateX(0)} .{{overlay}}{position:fixed;width:100%;height:100%;pointer-events:none;top:0;left:0;z-index:1000;opacity:0;background:#0000008a;transition:all 300ms ease;-webkit-backdrop-filter:blur(0px);backdrop-filter:blur(0px)} [data-{{type}}="outgoing"].center.{{show}} ~ .{{overlay}}{opacity:1;pointer-events:all} .{{fixed}}{position:fixed;z-index:50} .{{stop}}{position:relative;z-index:50} .{{preroll}}{position:relative;overflow:hidden;display:block} .{{preroll}}:has(iframe){padding-bottom:56.25%;height:0} .{{preroll}} iframe{display:block;width:100%;height:100%;position:absolute} .{{preroll}}_flex{display:flex;align-items:center;justify-content:center;position:absolute;top:0;left:0;right:0;bottom:0;background:rgba(0,0,0,.65);opacity:0;transition:opacity .35s ease;z-index:2} .{{preroll}}_flex.{{show}}{opacity:1} .{{preroll}}_flex.{{hide}}{pointer-events:none;z-index:-1} .{{preroll}}_item{position:relative;max-width:calc(100% - 68px);max-height:100%;z-index:-1;pointer-events:none;cursor:default} .{{preroll}}_flex.{{show}} .{{preroll}}_item{z-index:3;pointer-events:all} .{{preroll}}_flex .{{timer}}, .{{preroll}}_flex .{{cross}}{top:10px!important;right:10px!important} .{{preroll}}_hover{position:absolute;top:0;left:0;right:0;bottom:0;width:100%;height:100%;z-index:2} .{{preroll}}_flex:not(.{{show}}) .{{preroll}}_hover{cursor:pointer} .{{hoverroll}}{position:relative;overflow:hidden;display:block} .{{hoverroll}}_item{position:absolute;bottom:0;left:50%;margin:auto;transform:translateY(100%) translateX(-50%);transition:all 300ms ease;z-index:1000;max-height:100%} .{{preroll}}_item [id*="yandex_rtb_"], .{{hoverroll}}_item [id*="yandex_rtb_"]{min-width:160px} .{{hoverroll}}:hover .{{hoverroll}}_item:not(.{{hide}}){transform:translateY(0) translateX(-50%)} .{{slider}}{display:grid} .{{slider}} > *{grid-area:1/1;margin:auto;opacity:0;transform:translateX(200px);transition:all 420ms ease;pointer-events:none;width:100%;z-index:0} .{{slider}} > *.{{hide}}{transform:translateX(-100px)!important;opacity:0!important;z-index:0!important} .{{slider}} > *.{{show}}{transform:translateX(0);pointer-events:all;opacity:1;z-index:1} .{{slider}} .{{timeline}}{width:100%;height:2px;background:#f6f5ff;position:relative} .{{slider}} .{{timeline}}:after{content:'';position:absolute;background:#d5ceff;height:100%;transition:all 300ms ease;width:0} .{{slider}} > *.{{show}} .{{timeline}}:after{animation:timeline var(--duration) ease} .{{slider}} > *:hover .{{timeline}}:after{animation:timeline-hover} @keyframes timeline-hover{} @keyframes timeline{0% {width:0}100% {width:100%}}
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Еще одно объяснение эффекта Мпембы (это про почему кипяток замерзает быстрее холодной воды)

Еще одно объяснение эффекта Мпембы (это про почему кипяток замерзает быстрее холодной воды)

От переводчика: всю жизнь мучился вопросом, а тут на тебе- опять объяснили.

Краткое содержание: из-за наличия водородных связей в молекулах воды происходит изменение конфигурации ковалентных связей О-Н, с запасанием в них дополнительной энергии, выделяющейся при охлаждении и работающей как дополнительный подогрев, мешающий замерзанию. В горячей воде водородные связи растянуты, ковалентные не напряжены, запас энергии мал- остывание и замерзание идет быстрее. Существует некоторое характерное время tau, необходимое на формирование водородных связей, если процесс охлаждения будет идти медленно- то эффект Мпембы исчезнет. Если процесс охлаждения идет относительно быстро (до десятков минут)- то эффект выражен. Вероятно, должна быть и какая-то критическая температура, начиная с которой эффект появляется, но в статье это не отражено.

На КДПВ приведено изображение из оригинальной статьи, глядя на которое читатель должен со всей ясностью увидеть, что в ковалентных связях запасается энергия, которая затем может выделяться в виде дополнительного тепла, мешая остывать холодной воде.

История вопроса

Аристотель первым отметил, что горячая вода замерзает быстрее холодной, но химики всегда отказывались объяснять этот парадокс. До сегодняшнего дня.

Вода одно из самых обычных веществ на Земле, но в тоже время одно из самых загадочных. Например, как и у большинства жидкостей, ее плотность растет при охлаждении. Однако, в отличие от остальных, ее плотность достигает максимума при температуре 4С, а затем начинает уменьшаться вплоть до температуры кристаллизации.

В твердой фазе вода имеет несколько меньшую плотность, из-за чего лед плавает на поверхности воды. Это одна из причин существования жизни на Земле — если бы лед был плотнее воды, то при замерзании он опускался бы на дно озер и океанов, что сделало бы невозможным многие типы химических процессов, которые делают жизнь возможной.

Статья в тему:  Как спрятать холодильник в шкаф

Итак, существует странный эффект Мпембы, названный в честь танзанийского студента, который обнаружил, что горячая смесь для мороженого замерзает быстрее, чем холодная в морозилке школьной кухни где-то в начале 1960-х. (На самом деле этот эффект отмечался множеством исследователей в истории, начиная с Аристотеля, Фрэнсиса Бэкона и Рене Декарта).

Эффект Мпембы заключается том, что горячая вода замерзает быстрее холодной. Этот эффект измерялся во множестве случаев с различными объяснениями, изложенными далее. Одна из идей заключается в том, что горячие сосуды имеют лучший тепловой контакт с морозильной камерой и отводят тепло более эффективно. Другая- в том, что теплая вода испаряется быстрее, а так как этот процесс- эндотермический (идет с поглощением теплоты)- то он ускоряет замерзание.

Ни одно из этих объяснений не выглядит правдоподобным, поэтому реальное объяснение до сих пор отсутствовало.

Новое объяснение эффекта (теперь-то уж точно правильное)

Сегодня Зи Чанг из Наньянгского технологического университета Сингапура и несколько его коллег предоставили таковое. Эти ребята утверждают, что эффект Мпембы является результатом уникальных свойств различных типов связи, удерживающих молекулы воды вместе.

Так что же такого в этих связях? Каждая молекула воды состоит из сравнительно большого атома кислорода, соединенного с двумя маленькими атомами водорода обычной ковалентной связью. Но если поместить рядом несколько молекулы воды, то водородные связи тоже начнут играть важную роль. Это происходит из-за того, что атомы водорода одной молекулы располагаются вблизи кислорода другой молекулы, и взаимодействуют с ним. Водородные связи намного слабее ковалентных (прим. пер.

в 10 раз), но сильнее чем Ван-дер-Ваальсовы силы, которые использует геккон для прилипания к вертикальным стенам.

Химики давно знают о важности этих связей. Например, точка кипения воды намного выше, чем у других жидкостей с похожими молекулами, из-за того, что водородные связи удерживают молекулы вместе.

Статья в тему:  Сколько можно хранить яйца в холодильнике без скорлупы

Но в последние годы химики все более интересуются другими ролями, которые могут играть водородные связи. Например, молекулы воды в тонких капиллярах формируют длинные цепочки, удерживаемые водородными связями. Это очень важно для растений, у которых испарение воды через мембраны листьев эффективно протаскивает цепь молекул воды от корней вверх.

Теперь Зи с соавторами утверждают, что водородные связи так же объясняют эффект Мпембы. Их ключевая идея состоит в том, что водородные связи приводят к более плотному контакту молекул воды, и когда это происходит, естественное отталкивание между молекулами приводит к сжатию ковалентных связей и накоплению энергии в них.

Однако, когда жидкость нагревается, расстояние между молекулами увеличивается, а водородные связи растягиваются. Это также позволяет увеличить длину ковалентных связей и таким образом- отдать обратно энергию, накопленную в них. Важным элементом теории является тот факт, что процесс, при котором ковалентные связи отдают накопленную в них энергию- эквивалентен охлаждению!

В действительности- этот эффект усиливает обычный процесс охлаждения. Таким образом, горячая вода должна охлаждаться быстрее холодной, рассуждают авторы. И это именно то, что мы наблюдаем в эффекте Мпембы.

Почему новое объяснение лучше предыдущих?

Эти ребята рассчитали величину дополнительного охлаждения, и показали, что она в точности соответствует наблюдаемой разнице в экспериментах по измерению разности скоростей охлаждения горячей и холодной воды. Вуаля! Это интересный взгляд на сложные и загадочные свойства воды, которые все еще заставляют химиков не спать по ночам. Несмотря на то, что идея Зи и соавторов убедительна, она может оказаться очередной ошибкой теоретиков, которую другие физики должны будут опровергнуть. Это оттого, что теории не хватает прогностической силы (по крайней мере- в оригинальной статье).

Статья в тему:  Холодильник воет как вьюга

Зи и соавторам необходимо воспользоваться своей теорией для предсказания новых свойств воды, которые не выводятся из обычных рассуждений. Например, если ковалентные связи укорачиваются- это должно приводить к возникновению каких-то новых измеряемых свойств воды, которые не должны были бы проявляться в противном случае. Открытие и измерение таких свойств было бы последней вишенкой на торте, которой не хватает теории в ее текущем виде.

Итак, несмотря на то, что парни, возможно, неплохо объяснили эффект Мпембы, им необходимо чуток поднапрячься, чтобы убедить в этом остальных.

Как бы то ни было, теория у них интересная.

P.S. в 2016 один из соавторов — Чанг Солнце (Chang Q. Sun) совместно с Йи Солнцем (Yi Sun) опубликовали более полное изложение предложенной теории, с рассмотрением поверхностных эффектов, конвекции, диффузии, излучения и других факторов- и вроде бы наблюдают хорошее согласие с экспериментом (Springer).

Попытки объяснения

С тех пор были выдвинуты многочисленные объяснения, чтобы попытаться объяснить это явление. Но ни одно из них не было чем-то большим, чем правдоподобно звучащими теориями.

Вот несколько из них:

Теория: конвекционные токи в теплой воде, вызванные большими перепадами температур, заставят ее охлаждаться быстрее. И эти конвекционные потоки продолжаются даже после того, как вода остынет до той же температуры, что и более холодная вода. Что позволит ей обогнать более холодную воду в замораживание.
Проблема: вода – довольно вязкое вещество. И подобные конвекционные потоки не будут продолжать течь в течение времени, необходимого для охлаждения воды.

Теория: Горячая вода испаряется. Меньше оставшейся воды означает меньше воды для замерзания.
Проблема: даже с учетом испарения горячая вода замерзает быстрее, чем холодная.

Статья в тему:  Как устроен холодильник веко

Теория: Горячая вода создает в воздухе внутри морозильной камеры конвекционные потоки. Что увеличивает его эффективность охлаждения.
Проблема: вы можете провести эксперимент с горячим и холодным противнями в одной морозильной камере. И при этом наблюдать, как теплый лоток замерзает быстрее, чем холодный.

Теория: Холодная вода замерзает слоем сверху, создавая изоляцию и не позволяя остальной части очень быстро остыть.
Проблема: горячая вода также образует этот слой наледи.

Экспериментальные проблемы велики. Потому что есть так много переменных, которые нужно контролировать. Помимо начальной температуры, есть также форма морозильной камеры, объем и форма контейнера, изоляционные свойства контейнера, растворенные твердые вещества в воде и т. д.

До публикации исследования Сингапурского университета наиболее правдоподобная работа была сделана заинтересованным неспециалистом Джеймсом Браунриджем. Который предположил, что нагревание воды изменяет природу ее примесей. Что, в свою очередь, изменяет ее точку замерзания. Он заметил, что большая часть воды на самом деле переохлаждена ниже 0°C. При этом она не начинает кристаллизоваться, пока температура не станет значительно ниже.

Эффект Мпембы в реальной жизни

А вы года нибудь задумывались почему в зимнее время каток заливают горячей водой, а не холодной? Как вы уже поняли, делают это потому, что каток залитый горячей водой замёрзнет быстрее, чем если бы его заливали холодной. По той же причине горячей водой заливают горки в зимних ледовых городках.

Таким образом, знание о существовании феномена позволяет людям сэкономить время при подготовке площадок для зимних видов спорта.

Помимо этого, эффект Мпембы иногда используется и в промышленности — для сокращения времени заморозки продуктов, веществ и материалов, содержащих воду.

Давно размораживали морозилку

На то, какая вода замерзает быстрее, и почему это происходит, может повлиять снеговая подкладка, которая может иметь место в морозилке холодильника, используемого для эксперимента. Если взять два контейнера, идентичных по объему, но в одном из них будет горячая вода, а в другом – холодная, контейнер с горячей водой расплавит под собой снег, тем самым улучшая контакт теплового уровня со стенкой холодильника. Контейнер с холодной водой такого сделать не может. Если же таковой подкладки со снегом в холодильной камере нет, холодная вода должна замерзнуть быстрее.

Статья в тему:  Из чего сделан радиатор холодильника

Парадокс Мпембы

В 1963 году африканский школьник заметил, что горячая смесь мороженного в морозильной камере застывает быстрее, чем холодная. Он не получил ответа на этот вопрос от школьного учителя физики, но смог задать его профессору физики Деннису Осборну. Эксперимент проведенный с водой доказал наличие эффекта. В данном случае две пробы воды объемом 70 мл с температурой 25 и 90 о С помещались в одинаковых стаканчиках в морозильную камеру бытового холодильника на пенопластовых листах.

Далее Осборн и Мпемба провели ряд экспериментов, результаты которых были опубликованы в 1969 году журнале Physics Education .

Главные тезисы статьи приведем ниже.

Поскольку охлаждение начинается преимущественно с верхней поверхности жидкости, то скорость охлаждения зависит от температуры именно этой поверхности, а не от средней температуры жидкости, а процессы конвекции поддерживают эту температуру. За счет этого скорость потери тепла для системы с более высокой изначальной температурой тоже будет выше, чем для изначально более охлажденной системы. Это утверждение является спорным, поскольку перед замерзанием вода должна пройти промежуточные температуры, но с учетом влияния температурного градиента, авторы допускали, что можно упустить это утверждение. После этого явление стало активно обсуждаться исследователями и обрело название “эффект Мпембы”.

На рисунке изображена зависимость скорости замерзания от исходной температуры воды.

Объяснения эффекта Мпембы

Ответ на вопрос о том, почему горячая вода быстрее замерзает, люди искали полстолетия. Было опубликовано сотни научных работ по этому поводу, но только через 54 года был получен окончательный ответ.

В 2013 году Королевское химическое сообщество Великобритании пообещало выдать премию в 1000 фунтов тому, кто объяснит эффект Мпембы. Лучшим ответом было эссе Никола Бреговича из Университета Загреба в Хорватии. Он просуммировал основные исследуемые ранее теории и описал их.

Статья в тему:  Как регулировать температуру в холодильнике минск

В 2016 году группа ученых опубликовала материалы исследований, которые отрицали наличие данного парадокса. Обьяснение самого эффекта основывалось на погрешности исследований.

Казалось бы научный мир должен успокоиться, но не тут то было, и в 2017 году совместное исследование группы ученых из Китая и США объясняет явление водородными связями в кластерной структуре воды.

Историческая справка

Что в вопросе с замораживанием холодной и горячей воды «не всё чисто» упоминалось ещё в трудах Аристотеля, затем подобного же рода заметки делали Ф.Бэкон, Р.Декарт и Дж.Блэк. В новейшей истории за данным эффектом закрепилось название «парадокс Мпембы» — по имени школьника из Танганьики Эрасто Мпембы, задавшего этот же вопрос заезжему профессору физики.

Вопрос мальчика возник не на пустом месте, а из сугубо личных наблюдений за процессом охлаждения смесей для мороженого на кухне. Разумеется, присутствовавшие там же одноклассники вместе со школьным учителем подняли Мпембу на смех — однако после экспериментальной проверки лично профессором Д.Осборном желание потешаться над Эрасто у них «испарилось». Более того, Мпембой совместно с профессором в 1969-ом году в Physics Education было опубликовано детальное описание этого эффекта — и с тех пор вышеупомянутое название закрепилось в научной литературе.

Почему горячая вода замерзает быстрее холодной

Холодная погода характерна для большей части нашей страны. Кроме катания на лыжах в это время можно проводить некоторые эксперименты с водой. Например, бросать в воздух горячую воду, делая тем самым снег. Этот эффектный трюк основан на интересном факте, известном ещё со времён Аристотеля.

Описывается он просто — горячая вода замерзает быстрее холодной. Данное свойство получило название эффекта Мпембы. Танзанийский школьник обнаружил это явление в 1963 году. Так почему же горячая вода замерзает быстрее холодной?

Статья в тему:  Как узнать есть ли мышь в холодильнике

Эксперименты с мороженым

Эрасто Мпемба и другие дети в его школе часто делали мороженое, используя школьную морозильную камеру. Процесс был таков: они кипятили молоко и смешивали его с сахаром. После чего эту смесь помещали в морозилку. И однажды Мпемба поспешил и положил получившуюся субстанцию охлаждаться в разгоряченном состоянии.

Получилось так, что его мороженое получилось быстрее, чем у одноклассника. Но школьнику мало кто поверил, и в 1969 году Мпемба вместе с профессором физики опубликовали статью по этому поводу. Данный эффект наблюдается не всегда, поэтому если вы попытаетесь повторить его дома, далеко не факт, что это произойдёт. Вероятно, на это есть несколько причин.

Версии объяснения данного эффекта

Обнаружение эффекта Мпембы не позволило с абсолютной точностью объяснить данное явление. Полностью понять этот процесс пока не получилось, но научных споров ведётся много. И существует несколько версий объяснения эффекта Мпембы.

Наиболее часто выдвигаемая гипотеза — горячая вода испаряется из-за потери массы. В результате жидкость замерзает, теряя меньше тепла. Однако были случаи, когда эффект Мпембы наблюдался и в закрытых контейнерах, где испарения не было.

Другое предположение состоит в том, что вода развивает конвекционные потоки и температурные градиенты по мере ее охлаждения. Быстро остывающий стакан с горячей водой будет иметь большие перепады температур и быстрее отводить тепло от поверхности. В то время как равномерно охлаждённый стакан воды имеет меньшую разницу температур. Также получается меньше конвекции, ускоряющей процесс.

Существуют также и другие теории. Например, согласно одной из них все дело во влиянии растворенных газов в воде на процесс замораживания. В 2013 году группа исследователей из Сингапура предложила свою версию объяснения эффекта Мпембы. По их словам, разгадка кроется в уникальных свойствах химических связей в воде.

Статья в тему:  Тапервер умный холодильник как пользоваться

Как известно, стандартная молекула воды содержит один атом кислорода и два атома водорода. Они соединены ковалентными связями. Но когда происходит соединение нескольких молекул, атомы водорода также образуют связи с атомами кислорода в других молекулах. Эти водородные связи придают воде некоторые ее свойства, такие как относительно высокая температура кипения и уменьшенная плотность при заморозке.

Исследователи считают, что во время кипения воды молекулы растекаются, удлиняя водородные связи. Но из-за ограниченного объема ковалентные связи в отдельных молекулах сжимаются, накапливая энергию. Если вода замерзает в таком состоянии, связи высвобождают энергию в виде «размотанной пружины», охлаждаясь гораздо быстрее.

Но не все эксперты согласны с такой трактовкой эффекта Мпембы. Кто-то обвиняет экспертов в том, что их теория могла бы предсказать новое свойство воды. Однако его нет в привычном понимании. Химик Ричард Заре из Стэнфордского университета вовсе считает, что быстрое замерзание горячей воды преимущественно зависит от испарения.

Скорее всего, именно из-за этого и происходит эффект Мпембы. Возможно, в будущем ученым удастся полностью доказать это или привнести какие-то поправки к объяснению.

Трудности воспроизведения эксперимента

Однако причины эффекта, при исключении влияния испарения и газовыделения, остались необъясненными. Объяснить его быстрым испарением и газовыделением было возможно -в принципе, но экспериментальные результаты не очень убедительно совпадали с теоретическими расчетами влияния этих эффектов.

Более того, при попытках повторить эксперимент Осборна и Мпембы, их результаты воспроизводились далеко не всегда.

Корректная же постановка такого опыта была намного сложнее, чем может показаться на первый взгляд. Чтобы исключить влияние разного испарения и газовыделения у образцов разной температуры, замораживание нужно проводить в закрытых сосудах без воздушной прослойки. Но в этом случае возникали эффекты, связанные с изменением объема воды при изменении температуры. Лучшим вариантом, вероятно, были бы эластичные сферы, наполненные водой без пузырьков воздуха, с термопарой, непрерывно измеряющей температуру жидкости внутри них. Другим возможным вариантом был расчет влияния испарения и газовыделения на скорость охлаждения при разных температурах жидкости — который, как уже сказано, оставлял вопрос о причинах эффекта Мпембы открытым.

Статья в тему:  Нужно ли куличи убирать в холодильник

Отдельной сложностью была проблема точного измерения момента замерзания воды.

Словом, чистая постановка эксперимента для ответа на вопрос «какая вода замерзает быстрее, горячая или холодная, и почему это происходит» оказалась на практике очень непростым делом.

Впрочем, кое-что удалось выяснить. Как оказалось, на успех эксперимента сильно влияют условия охлаждения. При быстром отводе тепла из морозильной камеры эффект Мпембы проявлялся отчетливее. Но в целом вопрос о том, почему горячая вода замерзает быстрее, не закрыт окончательно и по сей день.

Если в холодильнике намерзает лед: правильный уход

Чтобы не допустить намерзания льда в холодильнике, нужно всего лишь следовать инструкции и бережно эксплуатировать агрегат. Нужно регулярно размораживать приборы. Двухкамерные холодильники с функцией «Ноу Фрост» подвергаются этой процедуре один раз в течении шести месяцев. Обычные устройства потребуют выключения раз в месяц.

И немного о правильном пользовании:

  1. В холодильнике должна находиться только охлажденная продукция в закрытых емкостях .
  2. Не загружать морозильную камеру сверх меры.
  3. Разморозку холодильника следует проводить по графику, иначе образуется лед на стенках. Если игнорировать этот момент, то лед будет постепенно нарастать, а это неприемлемо.
  4. Устанавливать агрегат следует ровно, между стеной помещения и задней стороной холодильника, должен быть промежуток.
  5. Время от времени покрывать смазкой резиновый уплотнитель . Если он совсем истрепался – сменить на новый.
голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: